Crowded and Complex: Molecular Simulations of Biological Membranes
نویسندگان
چکیده
منابع مشابه
Molecular Dynamics Simulations of Biological Membranes
Biological membranes mainly constituent lipid molecules along with some proteins and steroles. The properties of the pure lipid bilayers as well as in the presence of other constituents (in case of two or three component systems) are very important to be studied carefully to model these systems and compare them with the realistic systems. Molecular dynamic simulations provide a good opportunity...
متن کاملCalculation of resonance energy transfer in crowded biological membranes.
Analytical and numerical models were developed to describe fluorescence resonance energy transfer (RET) in crowded biological membranes. It was assumed that fluorescent donors were linked to membrane proteins and that acceptors were linked to membrane lipids. No restrictions were placed on the location of the donor within the protein or the partitioning of acceptors between the two leaflets of ...
متن کاملLarge-scale simulations of fluctuating biological membranes.
We present a simple, and physically motivated, coarse-grained model of a lipid bilayer, suited for micron scale computer simulations. Each approximately 25 nm(2) patch of bilayer is represented by a spherical particle. Mimicking forces of hydrophobic association, multiparticle interactions suppress the exposure of each sphere's equator to its implicit solvent surroundings. The requirement of hi...
متن کاملMolecular Dynamics Simulations on Polymeric Nanocomposite Membranes Designed to Deliver Pipobromane Anticancer Drug
Three chitosan (CS), polyethylene glycol (PEG) and polylactic acid (PLA) nanocomposite systems containing SiO2 nanoparticles and water molecules were designed by molecular dynamics (MD) simulations to deliver pipobromane (PIP) anticancer drug in order to discover the most appropriate drug delivery system (DDS) in aqueous medium which was analogous to the human body. The density for the CS matri...
متن کاملEntropic Tension in Crowded Membranes
Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2018
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2017.11.2215